a2 United States Patent

Moore et al.

US009461817B2

US 9,461,817 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR ENCRYPTING
JAVASCRIPT OBJECT NOTATION (JSON)
MESSAGES

(75) Inventors: Timothy Walter Moore, Pflugerville,
TX (US); Patrick Ryan Wardrop,
Austin, TX (US)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1255 days.

(21) Appl. No.: 12/356,305

(22) Filed: Jan. 20, 2009
(65) Prior Publication Data
US 2010/0185862 Al Jul. 22, 2010
(51) Imt.CL
HO4L 9/32 (2006.01)
GO6F 21/00 (2013.01)
HO4L 9/08 (2006.01)
(52) US. CL
CPCcccue. HO4L 9/08 (2013.01); HO4L 2209/56

(2013.01); HO4L 2209/805 (2013.01)
(58) Field of Classification Search
CPC ..o HO04L 9/08; HO4L 2209/56
USPC ittt 713/171
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

“XML Encryption Syntax and Processing”, W3C Recommendation,
Dec. 10, 2002, http://www.w3.0org/TR/2002/REC-xmlenc-core-
20021210/.*

Rubio, D., “JavaScript Object Notation for Ajax Web services”,
http://searchsoa.techtarget.com/tip/JavaScript-Object-Notation-for-
Ajax-Web-services.*

Schwartz, Michael, “JSON Hijacking and How Ajax.net Profes-
sional (AjaxPro) Avoids these Attacks,” Apr. 7, 2007.

Yoshihama et al., “Overcome security threats for Ajax applica-
tions,” Jun. 19, 2007.

“JSON vs. XML: Browser Security Model,” Jan. 2, 2007.

* cited by examiner

Primary Examiner — Alexander Lagor
(74) Attorney, Agent, or Firm — Gail H. Zarick; David H.
Judson

(57) ABSTRACT

The confidentiality of JavaScript Object Notation (JSON)
message data is secured using an encryption scheme. The
encryption scheme implements a JSON encryption syntax,
together with a set of processing rules for creating encrypt-
ing arbitrary data in JSON messages in a platform/language
independent manner. A method for encrypting a data item in
a JSON message begins by applying an encryption method
and a key to the data item to generate a cipher value. A data
object is then constructed that represents an encryption of
the data item. The data item in the JSON message is then
replaced with the data object, and the resulting modified
JSON message is then output from a sending entity. At a
receiving entity, information in the data object is used to
re-generate the data item, which is then placed back in the
original message.

2009/0307284 Al* 12/2009 Welingkar GO6F 11/1451 21 Claims, 3 Drawing Sheets
JSON MESSAGE
4(&)‘ 410 ?)2
DATA PROCESSING L DATA PROCESSING
SYSTEM If‘ 412 SYSTEM
CALLING L==——" CALLING

406 ~"| APPLICATION

APPLICATION [- 414

408~ ENCRYPTOR

NETWORK

W

DECRYPTOR N 416

U.S. Patent Oct. 4, 2016 Sheet 1 of 3 US 9,461,817 B2

105
100 106 102
> M ‘
SENDING ENTITY, e.g., ;—JS(E)—NﬁI RECEIVING ENTITY, e.g.,
CLIENT MACHINE L1 A SERVER MACHINE

RUNNING AN m RUNNING AN
AJAX-ENABLED AJAX-ENABLED
WEB BROWSER W} WEB SERVER

FIG. I
(PRIOR ART)

EF--{=, Paymentinfo

:F" Name
EH--{=sCreditCard

-] Limit

1

= - UserRecord

::" Currency ? . 0

2 *“ Name

!" Number !

L= E--{= CreditCards

3" Issuer riL]-

s - 0

‘" Expiration 'Q?

FIG. 2 E-}“i&CreGnCard
--{5) Limit
fr" Currency
l
!’“ Number
§“ Issuer
L' Expiration

FIG. 3

U.S. Patent Oct. 4, 2016 Sheet 2 of 3 US 9,461,817 B2
JSON MESSAGE
40\(1 410 :92
DATA PROCESSING o DATA PROCESSING
SYSTEM If‘ 412 SYSTEM
CALLING L= CALLING
406~"] APPLICATION APPLICATION [414
NETWORK
408~ ENCRYPTOR W DECRYPTOR _ 416
FIG. 4
SELECT THE ALGORITHM
500~ AND PARAMETERS TO BE
USED IN ENCRYPTING
THE DATA
y _~| CONSTRUCT Keylnfo OBJECT L~ 504
502 ~_| OBTAIN AND OPTIONALLY
REPRE
SENTTHE KEY N CONSTRUCT Encryptedkey P~ 506
Y '
SERIALIZETHE| | IDENTIFY
c08— ENCRYPT THE DATA ~ DATA ITEM ENCRYPT TYPE
\ N \
L 510 512 514
BUILD THE ENCRYPTED
516 JSON OBJECT
A
5181 PROCESS EncryptedData

FIG. 5

U.S. Patent Oct. 4, 2016 Sheet 3 of 3 US 9,461,817 B2

DETERMINE CALLING | ~700
600~ ALGORITHM, APPLICATION
PARAMETERS AND
KEY INFORMATION JSON MESSAGE
! | 706
602 ~ [LOCATE KEY USING |
KEY INFORMATION L= 704
!
604 —__DECRYPT DATA ENCRYPTOR
‘ 702
| procss
606-"] DECRYPTED DATA / 708
FIG. 6 FIG. 7 "\ 704
MODIFIED JSON
MESSAGE
80& DISPLAY
812
802~ l l————,' 8/16 4
DISPLAY
CPU ADAPTER []
804 _~805 s mn w
N
RAM - USER |-816
INTERFACE
808 ADAPTER
> =
CACHE | Feteieisrwroutaisrererete]
e] p
l -—
I/O ADAPTER }— ‘ 814
810 MOUSE
7 KEYBOARD
806 816
COMMUNICATION COMMUNICATION LINK
ADAPTER | < -
7 820

818 FIG. 8

US 9,461,817 B2

1
METHOD AND SYSTEM FOR ENCRYPTING
JAVASCRIPT OBJECT NOTATION (JSON)
MESSAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to Ser. No. 12/356,290, filed
Jan. 20, 2009, titled “Method and system for signing
JavaScript Object Notation (JSON) Messages”.

BACKGROUND OF THE INVENTION

1. Technical Field

This disclosure relates generally to securing data mes-
sages over a communication network.

2. Background of the Related Art

Asynchronous JavaScript and XML (collectively referred
to as AJAX) are well-known technologies that allow user
interaction with Web pages to be decoupled from the Web
browser’s communications with a Web server. AJTAX is built
upon dynamic HTML (DHTML) technologies including:
JavaScript, a scripting language commonly used in client-
side Web applications; the Document Object Model (DOM),
a standard object model for representing HTML or XML
documents; and Cascading Style Sheets (CSS), a style sheet
language used to describe the presentation of HTML docu-
ments. In AJAX, client-side JavaScript updates the presen-
tation of a Web page by dynamically modifying a DOM tree
and a style sheet. In addition, asynchronous communication,
enabled by additional technologies, allows dynamic updates
of data without the need to reload the entire Web page. These
additional technologies include XMLHttpRequest, an appli-
cation programming interface (API) that allows client-side
JavaScript to make HTTP connections to a remote server
and to exchange data, and JavaScript Serialized Object
Notation (JSON), a lightweight, text-based, language-inde-
pendent data-interchange format.

JSON is based on a subset of the JavaScript Programming
Language, Standard ECMA-262, 3’ Edition, dated Decem-
ber 1999. It is also described in Request for Comment (RFC)
4627. JSON syntax is a text format defined with a collection
of name/value pairs and an ordered list of values. JSON is
very useful for sending structured data over the wire (e.g.,
the Internet) that is lightweight and easy to parse. It is
language-independent but uses conventions that are familiar
to C-family programming conventions. Further information
about JSON can be found as json.org.

Currently, JSON messages are secured over the wire using
mere transport security (such as SSL), which only provides
point-to-point message security. The data in the message,
however, is provided in the clear and, as a result, such data
can still be compromised through various means, such as by
malicious altering by an attacker, or accidental altering
through transmission errors.

There remains a need to add data confidentiality protec-
tion to JSON messages.

BRIEF SUMMARY OF THE INVENTION

The privacy of JSON message data is secured using an
encryption scheme. The encryption scheme implements a
JSON encryption syntax, together with a set of processing
rules for encrypting arbitrary data in JSON messages in a
platform/language independent manner.

According to one feature, a machine-implemented
method for encrypting a data item in a JavaScript Object

10

15

20

25

30

35

40

45

50

55

60

65

2

Notation (JSON) message begins by applying an encryption
method and a key to the data item to generate a cipher value.
A data object is then constructed that represents an encryp-
tion of the data item. The data item in the JSON message is
then replaced with the data object, and the resulting modified
JSON message is then output. Preferably, the data object is
constructed according to a syntax, which defines a set of one
or more elements. These elements includes at least one of a
first element that includes information associated with the
encryption method; a second element that includes data
associated with the key; a third element that includes data
associated with the cipher value generated by applying the
encryption method and the key to the data item; and a fourth
element that includes data associated with an encrypted
version of the key. By organizing or applying these elements
in various ways to the message contents, an encryptor can
encrypt any JSON object, array, string, or other artifact
within the JSON message, or any combination of such data,
or the JSON message itself.

The above-described functionality can be used to imple-
ment an end-to end system wherein entities communicate
JSON messages to one another over a network. In this
aspect, a sending entity comprising a calling application
(such as a Web browser), and an encryptor that constructs a
data object for at least one data item in a JSON message. The
data object includes information on how to decrypt data
associated with the data object to obtain the data item. In
operation, the encryptor replaces the data item in the mes-
sage with the data object and provides a resulting modified
JSON message to the calling application. The system also
includes a receiving entity comprising a calling application
(such as a Web server) that receives the modified JSON
message, and a decryptor. The decryptor uses the informa-
tion in the data object to decrypt the data associated with the
data object to obtain the data item. The decryptor then
replaces the data associated with the data object with the
data item to obtain the original JSON message, which it then
provides to the application.

The foregoing has outlined some of the more pertinent
features of the invention. These features should be construed
to be merely illustrative. Many other beneficial results can
be attained by applying the disclosed invention in a different
manner or by modifying the invention as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference is now made to
the following descriptions taken in conjunction with the
accompanying drawings, in which:

FIG. 1 depicts a networking environment wherein JSON
messages are communicated from a sender to a receiver and
in which the subject disclosure may be implemented;

FIG. 2 is a first JSON request message represented in a
tree format to illustrate the hierarchical nature of the mes-
sage;

FIG. 3 is a second JSON request message represented in
the tree format;

FIG. 4 illustrates a representative computing environment
in which the principles of the present invention are imple-
mented;

FIG. 5 illustrates an encryptor function according to the
present invention;

FIG. 6 illustrates a decryptor function according to the
present invention;

FIG. 7 illustrates how a calling application uses the
encryptor function;

US 9,461,817 B2

3

FIG. 8 is a block diagram of a representative data pro-
cessing system in which the signature scheme may be
implemented.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

In a typical scenario, illustrated in FIG. 1, JSON messages
are sent from an initial sender 100 to an ultimate receiver
102 along a JSON message path comprising zero or more
intermediaries 104. The devices 100, 102 and 104 are
computing entities, such as data processing systems each
comprising hardware and software, which entities commu-
nicate with one another over a network, such as the publicly-
routed Internet 105 (in this example), an intranet, an
extranet, a private network, a wireless link, or any other
communications medium or link. As described below, a data
processing system typically comprises one or more proces-
sors, an operating system, one or more applications and one
or more utilities. A given data processing system may be a
sender or sending entity, in which case the system is deemed
to be on a “sender side” of the transmission, or a receiver or
receiving entity, in which case the system is deemed to be on
a “receiver side.” JSON messages, such as message 106,
may flow in either direction. Typically, the sender 100
includes a Web browser, and the receiver 102 includes a Web
server, or vice versa. In AJAX, client-side JavaScript
updates the presentation of a Web page displayed in the
browser by using the XMLHttpRequest API (or the like) to
communicate to server asynchronously, with the resulting
request/response typically involving the exchange of one or
more JSON (or other structured data) messages. In the prior
art, the JSON messages are delivered over the wire in the
clear, although point-to-point security typically is used (be-
tween sender and receiver) using transport layer security
mechanisms, such as HTTP over TLS (Transport Layer
Security). In a typical scenario, the sending entity is a client
machine executing an AJAX-enabled Web browser, and the
receiving entity is a server machine executing an AJAX-
enabled Web server. By “AJAX-enabled,” a particular
device has the capability of creating and processing mes-
sages using AJAX technologies. Of course, these are merely
representative data processing systems.

By way of additional background, known JSON syntax is
built on two structures: a collection of name/value pairs, and
an ordered list of values. The collection of name/value pairs
goes by different nomenclature depending on the language
involved, and this structure typically is realized as an object,
a record, a struct, a hash table, a keyed list or an associative
array. For discussion purposes, the object nomenclature will
be used. The ordered list of values also goes by different
nomenclature depending on the language involved, and this
structure typically is realized as an array, a vector, a list or
a sequence. For discussion purposes, the array nomenclature
will be used.

“An object is an unordered set of name/value pairs. An
object begins with “{” (left brace) and ends with “}” (right
brace). Each name is followed by “:” (colon) and the
name/value pairs are separated by “,” (comma):

object ={string:value }.

An array is an ordered collection of values. An array
begins with “[”(left bracket) and ends with “]” (right
bracket). Values are separated by “,” (comma):

array =[value].

A value can be a string in double quotes, or an object, or
an array. These structures can be nested, such as value
=string |[object| array.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 illustrates a representative first JSON message 200
in a tree format. This message is illustrated in its tree format
to show the hierarchical nature of the message according to
the above-described JSON syntax. In this example, a Pay-
ment Info object is the top level key of the message, which
also includes a CreditCard data object with a number of
attributes: Limit, Currency, Number, Issuer and Expiration.
In this example, the notation PaymentInfo.CreditCard iden-
tifies the credit card information under the payment infor-
mation. FIG. 3 illustrates a second JSON message 300 in a
tree format. In this example, a UserRecord object includes a
CreditCard array. The notation UserRecord. CreditCards [0].
CreditCard represents the credit card information in the first
element of the array of credit card. All elements of a message
can be identified by this type of notation. Duplicate keys at
the same level are not allowed because JSON artifacts are a
collection of name/value pairs; thus, the notation is guaran-
teed to be unique.

The following Example 1 illustrates the actual JSON

message that corresponds to the tree representation in FIG.
2:

{ “PaymentInfo”: {

“Name”:“John Smith”,

“CreditCard”: {
“Limit”:*5,0007,
“Currency”:*“USD”,
“Number”:*4019 ... 12347,
“Issuer”:“Example Bank”,
“Expiration”:“04v02”

The following Example 2 illustrates the actual JSON
message that corresponds to the tree representation in FIG.
3:

{ “UserRecord”: {
“Name”:*“John Smith”,
“CreditCards™: [{

“CreditCard”: {
“Limit”:*5,0007,
“Currency”:“USD”,
“Number”:*4019 ... 12347,
“Issuer’”:“Example Bank”,
“Expiration”:“04v02”

3

“CreditCard”: {
“Limit”:*25,000”,
“Currency”:“USD”,
“Number™:*2115 ... 12347,
“Issuer’”:“Example Bank”,
“Expiration”:“04v02”

These sample messages will be used below to illustrate the
principles of the JSON encryption syntax according to this
disclosure.

According to this disclosure, encryption is applied to any
part or the whole JSON message that includes JSON (object,
array or string) artifacts. The following Table 1 describes a
JSON Encryption syntax according this disclosure. The
JSON Encryption comprises a set of properties that are
described as follows:

US 9,461,817 B2

5

Property/element/object Description

EncryptedData This is a required element that is a container for information
describing the encrypted data.

Versionld This optional element describes the namespace for the
EncryptedData element. The Versionld allows for future
EncryptedData format and processing changes.

Id An EncryptedData element could have an optional Id for
identification purposes and retrieval.

EncryptionMethod This is a required element describing the algorithm used for
encryption and optionally the data type of the object encrypted.

Type A child element of EncryptionMethod that is a URI that
identifies the data type encrypted.

Algorithm A child element of EncryptionMethod that is a URI that
identifies the encryption algorithm used for the encrypted data or
encrypted key.

KeyInfo The element that contains information needed to retrieve the
decryption key.

CipherData A required element that contains a CipherValue.

CipherValue A base64 encoded string of an encrypted octet sequence.

EncryptedKeys|[] An array of EncryptedKey elements.

EncryptedKey An optional element that describes information on an encrypted key
that when decrypted can be used to decrypt the EncryptedData
CipherValue. This element can be a child of KeyInfo and
EncryptedKeys|[].

Versionld This optional element describes the namespace for an
EncryptedKey element. The Versionld allows for future
EncryptedKey format and processing.

Id An EncryptedKey may have an optional Id for identification purpose

and retrieval. This element is used when the EncryptedKey is a

child element of EncryptedKeys|].
ReferenceList[]
this key can be applied.

An array of data references that identify the encrypted data to which

When encrypting data in the JSON message, the resulting
data is replaced by a new JSON object. This object is
referred to as an EncryptedData object. The EncryptedData
object has information in it regarding how to decrypt the
data to get the original JSON message data. In particular,
typically, the EncryptedData object includes one or more
other JSON syntax objects, such as Versionld, Encryption-
Method, and CipherData. A Versionld object is used to
identify a version of the JSON encryption element, typically
specified as a URIL. The Keylnfo element typically defines
one or more parameters (e.g., hame, value, retrieval method,
and the like) for the keys used to encrypt and/or decrypt.
These parameters may themselves be specified or structured
as separate JSON objects (e.g., such as KeyName, Key-
Value, RetrievalMethod, and the like). The Encryption-
Method object identifies the particular encryption algorithm,
typically specified as a URI, which is to be used for the
encryption. The CipherData object is an element that iden-
tifies a cipher value that results from applying the encryption
algorithm to the data, and the cipher value itself may be a
structured element. An EncryptedKey object may be used to
specify how to build an encrypted key. The nomenclature set
forth above should not be taken as limiting. Thus, for
example, any of the above-identified objects may be gener-
alized into “first,” “second” and “third” objects or elements
without loss of generality. Also, the term “object” in the
context of the JSON encryption syntax described herein may
also be referred to as an “element” without loss of generality.

FIG. 4 illustrates the basic operation in the context of a
computing environment that includes a data processing
system 400 that is in communication with a data processing
system 402 over a network 404, such as the Internet. Data
processing system is machine executing an application 406,
such as an AJAX-enabled Web browser, together with an
encryptor 408, which is a computer-implemented routine
that provides the encryption function as well be described
below. The JSON message 410 that includes the Encrypted-

30

35

40

45

50

55

60

65

Data object 412 is output from the data processing system
400 and sent to the data processing system 402, which
includes an application 414, such as a Web server, together
with a decryptor 416, which is a computer-implemented
routine the provides a decryption function as will be
described below. The encryptor and decryptor routines are
conveniently implemented in software, as a set of program
instructions that are executable in a processor. More gener-
ally, the words “encryptor” and “decryptor” are merely role
names for one or more software processes, and the “appli-
cation” simply refers to a software program. Of course, the
application is not limited to a Web browser or Web server,
as the encryptor and/or decryptor functions may be called
from any calling application.

With reference now to FIG. 5, a process flow diagram is
shown illustrating how to encrypt a data item according to
the subject matter described herein. As used herein, and as
noted above, a “data item” may be any JSON object, array,
string, or other artifact within the JSON message, or any
combination of such data, or the entire JSON message itself.
The encryption process illustrated in FIG. 5 is repeated for
each data item to be encrypted in the message, and as will
be seen it can also be used to encrypt the key that is used for
encryption if such encryption is desired.

For each data item to be encrypted as an EncryptedData
or EncryptedKey, the encryptor performs the following
machine-implemented method. The method begins at step
500 by selecting an algorithm (and parameters) to be used in
encrypting the data item. At step 502, the routine obtains and
(optionally) represents the key that will be used for encryp-
tion. Thus, if the key is to be identified in the JSON message
itself, at step 504 the routine constructs a KeyInfo element
with the appropriate parameters (e.g., KeyName, KeyValue,
RetrievalMethod, and the like). If the key itself is to be
encrypted, at step 506 the routine constructs an Encrypted-
Key JSON object, preferably by recursively applying the
encryption process. The result of recursively applying the

US 9,461,817 B2

7

encryption process may then be used as a child element of
Keylnfo, or the result may be positioned at the root of the
JSON document tree, e.g., in a list of EncryptedKeys.

After step 502 is completed, the routine continues at step
508, which is a sub-loop used to encrypt the data item. In
particular, at step 510 the routine obtains a series of octets
by serializing the data item in UTF-8. As is well-known,
UTF-8 (8-bit. UCS/Unicode Transformation Format) is a
variable-length character encoding for Unicode. UTF-8
encodes each character in one to four octets (8-bit bytes). In
the context of data storage and transmission, serialization is
the process of converting a data item into a sequence of bits
so that it can be stored on a storage medium (such as a file,
or a memory buffer) or transmitted across a network con-
nection link. When the resulting series of bits is re-read
according to the serialization format, it can be used to create
a semantically identical clone of the original data item. The
process of serializing a data item is also known as deflating
or marshalling; the opposite operation, namely, extracting a
data item from a series of bytes, is known as deserialization
(inflating or unmarshalling). Serialization may be done by
the encryptor; if the encryptor does not serialize, then the
application should perform the serialization. If the data item
is of any other type that is not already in octet form, the
application should serialize the data item as octets.

At step 512, the routine encrypts the octets using the
algorithm (identified in step 500) and the key obtained in
step 502. At step 514, the encryptor identifies a data item
“type.” This operation is desired unless the decryptor knows
(explicitly or implicitly) the type of the data item being
encrypted. The definition of the “type” is preferably bound
to an identifier (e.g., through a URI) and specifies (to the
decryptor) how to obtain and interpret the plaintext octets
after decryption. The type specified indicates the return type
of JSON artifact of the parsed JSON plaintext. In particular,
the encryption method type identifies the underlying JSON
data type encrypted so as to simplify the decryption pro-
cessing. JSON libraries have classes that can parse a JSON
string and turn it into a JSON object, and that can serialize
a JSON object to a JSON string. There are different JSON
object data types (JSONObject, JSONArray). Knowledge of
the type of data allows the decryption process to use the
methods supplied by JSON libraries and thereby construct
the resulting JSON message after decryption. This com-
pletes the data encryption sub-loop 508.

The routine then continues at step 516 to build the
EncryptedData or EncryptedKey IJSON object. The
EncryptedData JSON object represents the information
described above used to encrypt the data item, including the
type of the encrypted data, encryption algorithm, key, and
the like. If the encrypted octet sequence obtained in step 508
is to be stored in the CipherData element within the
EncryptedData or EncryptedKey JSON object, then the
encrypted octet sequence is encoded (e.g., through base 64
encoding) and inserted as the content of a CipherValue
element.

The routine then continues a step 518 to process the
EncryptedData object. In one embodiment, the encryptor
returns the EncryptedData JSON object to the application.
The application then uses the EncryptedData object as a
top-level element in a new JSON message, or inserts the
object into another JSON message. More typically, and
according to another embodiment, it is the encryptor that
replaces the unencrypted JSON artifact (the data item) with
the EncryptedData object. In particular, and as shown in
FIG. 7, when an application 700 requires a JSON artifact to
be replaced, the application 700 supplies the encryptor 702

25

30

40

45

55

8
the JSON message 704 in addition to identifying the JSON
artifact 706 to be replaced. The JSON artifact can be
identified using notation as described above. After creating
the EncryptedData JSON object 708, the encryptor 702
removes the identified JSON artifact 706 and inserts in its
place the EncryptedData JSON object 708.

This completes the encryption process.

FIG. 6 is a process flow diagram that illustrates a decryp-
tion process for each EncryptedData or EncryptedKey to be
decrypted. As noted above, this function is carried out by a
decryptor, typically on a data processing system that
receives the JSON message having the EncryptedData Or
EncryptedKey object.

The routine begins at step 600 to process the JSON object
to determine the algorithm, parameters and KeyInfo element
to be used for the decryption. If some information is omitted,
the application that calls the decryptor must supply it. At
step 602, the routine locates the data encryption key accord-
ing to the Keylnfo element, which (as noted above) may
contain one or more children elements. These children
typically have no implied processing order. If the data
encryption key is encrypted, the routine locates the corre-
sponding key in order to decrypt it. This may be a recursive
step, as the key-encryption key itself may be encrypted. Or,
the routine may retrieve the data encryption key from a local
data store using the provided attributes or implicit binding
identified in the element.

At step 604, the routine decrypts the data contained in the
CipherData element. In particular, if a CipherValue child
element is present, then the associated text value is retrieved
and decoded (e.g., by base 64 decoding) to obtain the
encrypted octet sequence. The encrypted octet sequence is
then decrypted using the algorithm, parameters and key
value already determined from steps 600 and 602. Thereaf-
ter, and at step 606, the decrypted data is processed. In
particular, the cleartext octet sequence obtained in step 604
is interpreted, e.g., as UTF-8 encoded character data. The
decryptor must be able to return the “type” value and the
UTF-8 encoded JSON character data. The decryptor may
also perform validation on the serialized JSON object.
Preferably, the decryptor also replaces the EncryptedData
object with the decrypted JSON artifact represented by the
UTF-8 encoded characters. The decryptor or some other
function may also perform a validation on the result of this
replacement operation. Typically, the application supplies
the JSON message context and identifies to the decryptor the
EncryptedData object being replaced. If the JSON document
into which the replacement is occurring is not UTF-8, the
decryptor transcodes the UTF-8 encoded characters into the
target encoding.

This completes the decryption process.

“The following are representative examples that illustrate
how the JSON encryption syntax and processing rules
generate protected JSON messages according to the tech-
niques disclosed herein. URLs specify “http:” (omitted for
clarity).”

Example 3 below represents the JSON message of
Example 1 following encryption. In this example, The
EncryptedData JSON object represents the encrypted Cred-
itCard information. The EncryptionMethod describes the
type of encrypted JSON data and the applied encryption
algorithm, which (in this example) is triple DES (Data
Encryption Standard). The KeylInfo contains the information
that is needed to retrieve the decryption key, which (in this
example) is a shared secret key represented by the KeyName

US 9,461,817 B2

9

object. The CipherValue contains the cipher text that is
obtained by serializing and encrypting the CreditCard infor-
mation:

{ “PaymentInfo: {

“Name”:*“John Smith”,

“EncryptedData”: {
“Versionld”:“http://www.ibm.com/2008/09/
jsonenc#EncryptedData”,
“EncryptionMethod™: {

“Type”:“http://www.ibm.com/2008/09/
jsonenc#object”,
“Algorithm”:*//www.ibm.com/.../
jsonenc#tripledes-cbe”
b
“KeyInfo: {

2,6,

“KeyName™:“shared secret key name”

b
“CipherData”: {
“CipherValue”:*“ydUNqHkMrD...”
¥

In Example 3 above, it is assumed that both the sender and
recipient have a common secret key. If the recipient has a
public and private key pair, which is most likely the case, the
Creditcard information can be encrypted as shown in
Example 4 below. In this example, the symmetric key is
derived by the encryptor (it is not a pre-established secret);
the symmetric key is encrypted with the public key of the
recipient, and output is stored in EncryptedKey. This allows
for the encrypting process to “share” the symmetric key
on-the-fly rather than having it as a pre-established secret. It
also allows the encryptor to limit the number of recipients:

{ “PaymentInfo™: {

“Name”:*“John Smith”,

“EncryptedData”: {
“Versionld”:“http://www.ibm.com/2008/09/
jsonenc#EncryptedData”,

“EncryptionMethod™: {
“Type”:*//www.ibm.com/2008/09/jsonenc#object”,
“Algorithm”:*//www.ibm.conv.../jsonenc#tripledes-cbc”

b

“KeyInfo™: {
“EncryptedKey”: {
“Versionld”:*://www.ibm.com/2008/09/
jsonenc#EncryptedKey”,
“EncryptionMethod”: {
“Algorithm”: “//www.ibm.com/.../jsonenc#rsa-1_5",

“KeyInfo: {

“X509Data”: {
“X5098KTI”: “R8ReX ... GNM="

}

I3

“CipherData”: {
“CipherValue”:“yMTEyu0tAml...”

}

}

3
“CipherData”: {
“CipherValue”:“ydUNqHkMrD...”

The following Example 5 is similar to Example 4, how-
ever, here the EncryptedKey is found using a Retrieval-
Method instead of embedding it as a child object of the
Keylnfo element. As can be seen in this example, at the root

10

15

20

25

30

35

40

45

50

55

60

10

of the JSON document a list of EncryptedKeys contains an
array of EncryptedKey JSON objects. In this example, there
is one EncryptedKey that contains an identifier that matches
the URI in the RetrievalMethod of the EncryptedData.
EncryptedKeys can be mapped during parsing with an
EncryptedKey. Id being the key, and the value would be the
EncryptedKey data. This allows for quick retrieval of the
EncryptedKey. The Referencel.ist here is an object that
contains pointers from a key value of an EncryptedKey to
items encrypted by that key value (EncryptedData or
EncryptedKey JSON objects).

{ “PaymentInfo: {
“Name”:*“John Smith”,
“EncryptedData”: {
“Versionld”:*//www.ibm.com/2008/09/
jsonenc#EncryptedData”,
“Id”:*CreditCard”,
“EncryptionMethod™: {
“Type”:“//www.ibm.com/2008/09/
jsonenc#object”,
“Algorithm”:*//www.ibm.com/2008/09/
jsonenc#tripledes-cbc”

}

‘o

eylnfo: {

“RetrievalMethod”: {
“URI"”:*“#ID_OF_ENCRYPTEDKEY”,
“Type”:“http://www.ibm.com/2008/09/
jsonenc#EncryptedKey”

b

I

“CipherData”: {
“CipherValue”:“ydUNqHkMrD...”
}

}

“EncryptedKeys”:[

“EncryptedKey”: {
“Versionld”:*//www.ibm.com/2008/09/
jsonenc#EncryptedKey”,
“Id”:*ID_OF_ENCRYPTEDKEY™,
“EncryptionMethod”: {

“Algorithm”:*//www.ibm.com/2008/09/
jsonenc#rsa-1_5"

b
“KeylInfo: {
“X509Data”: {
“X509SKI":“R8ReXSe ... vWQWGNM="

“CipherData”: {
“CipherValue”:“xyzabc..”

b
“ReferenceList”™: [{
“DataReference”: {
“URI”:*#CreditCard”

1,
“CarriedKeyName”:“Sally Doe”

}

Example 6 below represents the JSON message of
Example 1 following encryption of just the CreditCard
number. This example is similar to that of Example 3 above,
with the main difference being the EncryptionMethod Type
value. The resulting decryption of the EncryptedData would
result in a string that would be set as the value of the Number
object:

{ “PaymentInfo: {
“Name”:*“John Smith”,

US 9,461,817 B2

-continued
“CreditCard”: {
“Limit”:3,0007,
“Currency”:*“USD”,
“Number”: {

“EncryptedData”: {
“Versionld”:“.../jsonenc#EncryptedData”,
“EncryptionMethod”: {

“Type”:“.../jsonenc#string”,
“Algorithm™:* ... /jsonenc#tripledes-cbc™
I

“KeyInfo: {

“KeyName™:“shared secret key name”

“CipherData”: {

“CipherValue”:*ydUNqHkMrD...”

b
b

“Issuer”:“Example Bank”,
“Expiration”:“04v02

}

Example 7 below represents the JSON message of
Example 2 following encryption of the CreditCards[| JSON
array. In this example, the result is very similar to Example
3 above, with the main difference once again being the
EncryptionMethod Type. The resulting decryption of the
EncryptedData would result in a string value that when
parsed would result in a JSON array data type that would be
added to the UserRecord in place of the EncryptedData:

{ “UserRecord ”: {
“Name”:*“John Smith”,
“EncryptedData”: {
“Versionld”:*//www.ibm.con/ .../jsonenc#EncryptedData”,
“EncryptionMethod”: {
“Type”: “http://www.ibm.com/2008/09/jsonenc#array”,
“Algorithm™:*... /jsonenc#tripledes-cbc”
b
“KeylInfo: {
“KeyName”:“shared secret key name”
“CipherData”: {
“CipherValue”:“ydUNqHkMrD...”
¥
¥

The particular encryption algorithms, keys and param-
eters used by the encryptor are not a feature of this disclo-
sure. Thus, the encryption algorithms used to encrypt the
data items in the JSON message may be any known tech-
niques. Such as one or more of the following:
/Iwww.ibm.com2008/09/jsonenc#aes128-cbc
/Iwww.ibm.com2008/09/jsonenc#tripledes-cbc
/Iwww.ibm.com/2008/09/jsonenc#rsa-1_5

These algorithms are merely representative, however, as
any known or later-developed encryption algorithms may be
used.

The techniques described herein are advantageous. The
disclosed subject matter solves the problem of adding mes-
sage encryption to JSON messages. Using the encryption
syntax as described, a sending entity can encrypt all or parts
of a JSON message supporting symmetric (shared secret)
and asymmetric (public key) encryption methods. The
advantage of using JSON over XML is that JSON is
lightweight and fast to parse, resulting in increased perfor-
mance and smaller footprint (on disk and memory). By

10

15

20

25

30

35

40

45

50

55

60

65

12

implementing JSON message encryption in this manner, an
additional layer of security (over and above any transport
layer security) is provided to protect the data confidentiality
of the communicated data. Thus, the data in the message is
further secured against malicious altering by an attacker
(who can compromise the transport security), or against
accidental altering through transmission errors. Using this
approach, the sending entity need not even use transport
security.

FIG. 8 illustrates a representative data processing system
800 for use as the sending or receiving entity. A data
processing system 800 suitable for storing and/or executing
program code will include at least one processor 802
coupled directly or indirectly to memory elements through a
system bus 805. The memory elements can include local
memory 804 employed during actual execution of the pro-
gram code, bulk storage 806, and cache memories 808 that
provide temporary storage of at least some program code to
reduce the number of times code must be retrieved from bulk
storage during execution. Input/output or /O devices (in-
cluding but not limited to keyboards 810, displays 812,
pointing devices 814, etc.) can be coupled to the system
either directly or through intervening I/O controllers 816.
Network adapters 818 may also be coupled to the system to
enable the data processing system to become coupled to
other data processing systems or devices through interven-
ing private or public networks 820. These data processing
systems execute the encryptor or decryptor routines as
described above.

“The disclosed subject matter can take the form of an
entirely hardware embodiment, an entirely software embodi-
ment or an embodiment containing both hardware and
software elements. In one embodiment, the JSON encryp-
tion syntax and associated encryptor and decryptor routines
are implemented in software, which includes but is not
limited to firmware, resident software, microcode, and the
like. Furthermore, as noted above, the disclosed subject
matter can take the form of a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer
readable medium can be any apparatus that can contain or
store, the program for use by or in connection with the
instruction execution system, apparatus, or device. The
medium can be an electronic, magnetic, optical, electromag-
netic, infrared, or semiconductor system (or apparatus or
device). Examples of a computer-readable medium include
a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read—only memory (ROM), a rigid magnetic disk
and an optical disk. Current examples of optical disks
include compact disk-read only memory (CD-ROM), com-
pact disk—read/write (CD-R/W) and DVD. The transform
and related functions may also be implemented as a service.”

The encryptor and/or decryptor functions may be imple-
mented as computer programs that are retrieved over a
computer network. In one example embodiment, the encryp-
tor or decryptor is a computer program product comprising
a set of instructions (program code). The instructions are
stored in a computer readable storage medium in a data
processing system, and these instructions are downloaded
over a network from a remote data processing system. In an
alternative embodiment, the instructions are stored in a
computer readable storage medium in a server data process-
ing system, and the instructions are downloaded over a
network to a remote data processing system for use in a

US 9,461,817 B2

13

computer readable storage medium with the remote system.
The encryptor and/or decryptor functions may also be car-
ried by a third party as a managed or hosted service offering.

While the above describes a particular order of operations
performed by certain embodiments of the invention, it
should be understood that such order is exemplary, as
alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, or the like. References in the specification to a
given embodiment indicate that the embodiment described
may include a particular feature, structure, or characteristic,
but every embodiment may not necessarily include the
particular feature, structure, or characteristic.

Finally, while given components of the system have been
described separately, one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions, program sequences, code portions, and
the like.

The subject matter herein is not limited to encrypting
JSON messages. The techniques may be applied to any
text-based, data-interchange message format that is used to
create a portable representation of structured data. Thus, the
techniques described herein apply to encrypting structured
data messages, where a structured data message comprises
a collection of name/value pairs, and an ordered list of
values. More generally, the techniques described herein may
be generalized for use with respect to any structured data-
interchange format. Examples of such alternative formats
include those where the collection of name/value pairs is a
record, a struct, a hash table, a keyed list or an associative
array, or where the ordered list of values is realized as a
vector, a list or a sequence.

Having described our invention, what we now claim is as
follows:

1. A method to secure messages deliverable over a com-
munication network, comprising:

receiving, at an AJAX-enabled application, a JavaScript

Object Notation (JSON) message comprising at least
one data item;

calling an encryptor function from the AJAX-enabled

application to carry out a set of operations on the JSON

message that include:

serializing the at least one data item into a series of bit
sequences;

encrypting the series of bit sequences to generate a
result;

associating a data type with the result to generate a data
object that represents an encryption of the data item
in the JSON message, the data type including infor-
mation that specifies how to recover the series of bit
sequences after a subsequent decryption; and

replacing the at least one data item with the data object
to generate a modified JSON message; and

returning the modified JSON message to the AJAX-

enabled application and transmitting the modified

JSON message over the communication network to

another AJAX-enabled application.

2. The method as described in claim 1 wherein the set of
operations carried out on the JSON message further include:

including in the data object a key information element that

includes information associated with an encryption key
and an encryption method.

3. The method as described in claim 2 wherein the key
information element includes a key value that results from
applying a public key of a key pair to a symmetric key, the
symmetric key being generated in association with encrypt-
ing the series of bit sequences.

10

15

20

25

30

35

40

45

50

55

60

65

14

4. The method as described in claim 1 wherein the data
item is a JSON object, array, string, or other artifact within
the JSON message, or any combination of such data, or the
JSON message itself.

5. The method as described in claim 1 wherein each series
of bit sequences is an octet.

6. The method as described in claim 1 wherein the data
type is bound to a Uniform Resource Identifier (URI) at
which the information resides.

7. An apparatus, comprising:

a processor;

computer memory holding computer program instructions

executed by the processor to secure messages deliver-
able over a communication network by:
receiving, at an AJAX-enabled application, JavaScript
Object Notation (JSON) message comprising at least
one data item;
calling an encryptor function from the AJAX-enabled
application to carry out a set of operations on the
JSON message that include:
serializing the at least one data item into a series of
bit sequences;
encrypting the series of bit sequences to generate a
result;
associating a data type with the result to generate a
data object that represents an encryption of the
data item in the JSON message, the data type
including information that specifies how to
recover the series of bit sequences after a subse-
quent decryption; and
replacing the at least one data item with the data
object to generate a modified JSON message; and
returning the modified JSON message to the AJAX-
enabled application and transmitting the modified
JSON message over the communication network to
another AJAX-enabled application.

8. The apparatus as described in claim 7 wherein the
computer program instructions are further executed by the
processor to include in the data object a key information
element that includes information associated with an encryp-
tion key and an encryption method.

9. The apparatus as described in claim 8 wherein the key
information element includes a key value that results from
applying a public key of a key pair to a symmetric key, the
symmetric key being generated in association with encrypt-
ing the series of bit sequences.

10. The apparatus as described in claim 7 wherein the data
item is a JSON object, array, string, or other artifact within
the JSON message, or any combination of such data, or the
JSON message itself.

11. The apparatus as described in claim 7 wherein each
series of bit sequences is an octet.

12. The apparatus as described in claim 7 wherein the data
type is bound to a Uniform Resource Identifier (URI) at
which the information resides.

13. A product, comprising:

a non-transitory computer readable storage device; and

computer readable instructions stored by the storage

device;

wherein the computer readable instructions include

instruction sets respectively written to cause a com-

puter to secure messages deliverable over a communi-

cations network by:

receiving, at an AJAX-enabled application, JavaScript
Object Notation (JSON) message comprising at least
one data item;

US 9,461,817 B2

15

calling an encryptor function from the AJAX-enabled
application to carry out a set of operations on the
JSON message that include:
serializing the at least one data item into a series of
bit sequences;
encrypting the series of bit sequences to generate a
result;
associating a data type with the result to generate a
data object that represents an encryption of the
data item in the JSON message, the data type
including information that specifies how to
recover the series of bit sequences after a subse-
quent decryption; and
replacing the at least one data item with the data
object to generate a modified JSON message; and
returning the modified JSON message to the AJAX-
enabled application and transmitting the modified
JSON message over the communication network to
another AJAX-enabled application.

14. The product as described in claim 13 further including
instructions sets that include in the data object a key infor-
mation element that includes information associated with an
encryption key and an encryption method.

15. The product as described in claim 14 wherein the key
information element includes a key value that results from
applying a public key of a key pair to a symmetric key, the
symmetric key being generated in association with encrypt-
ing the series of bit sequences.

16. The product as described in claim 13 wherein the data
item is a JSON object, array, string, or other artifact within
the JSON message, or any combination of such data, or the
JSON message itself.

17. The product as described in claim 13 wherein each
series of bit sequences is an octet.

18. The product as described in claim 13 wherein the data
type is bound to a Uniform Resource Identifier (URI) at
which the information resides.

19. A method to secure messages deliverable over a
communication network, comprising:

receiving, at an AJAX-enabled application, a modified

JavaScript Object Notation (JSON) message that has
been generated according to the following sender-side
operations:

10

15

20

25

30

35

40

16

receiving a JavaScript Object Notation (JSON) mes-
sage comprising at least one data item;

serializing the at least one data item into a series of bit
sequences;

encrypting the series of bit sequences to generate a
result;

associating a data type with the result to generate a data
object that represents an encryption of the data item
in the JSON message, the data type including infor-
mation that specifies how to recover the series of bit
sequences after a subsequent decryption; and

replacing the at least one data item with the data object
to generate a modified JSON message; and

calling a decryptor function from the AJAX-enabled

application to process the modified JSON message to
recover in cleartext the JSON message comprising the
at least one data item; and

returning the JSON message in cleartext to the AJAX-

enabled application.

20. The method as described in claim 19 wherein pro-
cessing the modified JSON message includes:

obtaining a decryption key;

decrypting the data object and recovering the series of bit

sequences; and

interpreting the series of bit sequences according to the

information to deserialize the series of bit sequences
and recover the data item.

21. The method as described in claim 19 wherein the
modified JSON message also includes a key information
element that includes a key value that results from applying
a public key of a key pair to a symmetric key, the symmetric
key having been generated in association with encrypting
the series of bit sequences, and

wherein processing the modified JSON message further

includes:

generating the symmetric key using a private key of the
key pair; and

using the symmetric key so generated to decrypt the
data object.

